i

From Ephemeral Code
to Permanent Intelligence
A Developer’s Guide to the
Spec-Kit Plus Framework

& NotebookLM

Al assistants deliver code,
but the reasoning vanishes.

Every feature you build generates two outputs: Washnut
Context and reasoning are

decisions, trade-offs, and successful prompts).

Today, we discard the intelligence and keep the
code, which is often ephemeral and quickly
rewritten.

This means every new project, and even every
new feature, starts from a state of amnesia.
We lose the “why, forcing us to solve the same
problems repeatedly.

== - — == =

i1di : NewR t
We are building with sand, not stone. S e i

New project or feature
demand arises.

1 Generate

) with Al terminal.

Human interacts

Deliver
Ephemeral Al-generated
code is produced.

&1 NotebookLM

Spec-Kit Plus is a framework to capture intelligence, not just code.

Spec-Kit Plus is a Specification-Driven Development with Reusable Intelligence (SDD-RI) framework. It provides
a methodology and structure to systematically capture the “why” behind your code as permanent, reusable assets.

» It provides: Templates for specifications and plans, slash commands to orchestrate Al subagents, and a
directory structure that separates permanent intelligence from ephemeral code.

e Critical distinction: It is NOT an Al service. It is a framework that works WITH your existing Al tools (Claude
Code, Gemini CLI, etc.).

Reusable
Intelligence
Repository

<—— (Generate

Architectural ;ff:__‘ IR g 4%
|\ Decision i)/} -~

& NotebookLM

The framework is built on two architectures

of reusable intelligence.

Horizontal Intelligence

| |
P f"f"}'*ff"f’ff«’f ',-’;f.-f’}}'.+;"f"'f. , ffaxf?’a{ff’fff.- ffg’ff.”'_,x'ff;
] I I

Captures reasoning and decisions across
time. It's the institutional memory that
persists from one project to the next,
preventing repeated mistakes.

@ Architectural Decision Records (ADRs)

%’ Prompt History Records (PHRS)

Vertical Intelligence

==

|| -y

]

Distributes work through a hierarchy of
specialized Al subagents. It's the embedded
expertise that can be delegated to solve

specific problems consistently.

ﬁ.(g} Skills & Subagents

& NotebookLM

Horizontal Intelligence turns decisions into a
compounding knowledge base.

Architectural Decision Records (ADRs) %‘ Prompt History Records (PHRS)
~ Document the “WHY" behind significant decisions. Automatically log Al collaboration sessions to
capture what works and what fails.

By

* Bad documentation: “Used JWT for authentication.”
* Good ADR: “Chose JWT over sessions because: (1) How it works: System-generated records of

stateless auth needed for microservices, (2) mobile /sp.* command executions, ensuring successful
== clients benefit from token refresh. Tradeoff accepted: patterns are retained.
token revocation complexity.”

Al
3 ‘
Al =, - l'
: *~. t i < = “.L = F
! ; . 777, I cessd ? . 77 + ek : * I VISP III ? IIPIIIIE PP :fn“:ﬁ#;ffw sk ffff_f’=>
Project 1 Project 2 Project 5 Project 10

This isn't just documentation. Al agents read ADRs for |
context and learn from PHRs to avoid past mistakes.

g

& NotebookLM

Vertical Intelligence delegates work to
specialized Al subagents.

R

Instead of using one generic Al, you delegate tasks to specialists. Each subagent is designed with \

the Persona + Questions + Principles (P+Q+P) pattern to activate reasoning, not just prediction.

Persona

“You are a requirements analyst
who obsesses over edge cases
before implementation.”
- (NOT "You are a helpful assistant.”)

- - - -

Questions

“What inputs can break this?
What assumptions are hidden?
What's the simplest test?”
(NOT “Is this good?")

Principles

“Every data input must
document boundary conditions
(zero, negative, overflow).”
(NOT “Make it good.”)

.-_,.-'.-"

Key Insigh
The Specification Subagent works for any feature needing a spec
(auth, payments, uploads). You don't rebuild this expertise; you reuse it. |

t

i

T —

& NotebookLM

- A strong Constitution is the source of all downstream quality.

The Constitution is a document created
once per project that defines immutable
standards for all features. It’s the rulebook
you and your Al must follow. €

- =l » Constitution (Global Rules): Code
quality, testing requirements, error
handling patterns.

<0+ Specification (Feature Rules): User

_ Strong

Constitution
“All functions have
type hints,’

“100% test coverage”

Precise
Specifications

_Inconsistent
Outputs

Comprehensive
Plans

Consistent = —

stories, acceptance criteria for one Code .
feature. | ; _ P
Expert Insight

%

> “In Al-native development, the Constitution isn't bureaucracy—it's leverage. The 30 minutes you
invest here saves hours of rework later.”

&1 NotebookLM

The workflow begins by defining “what” success looks
like, before writing a single line of code.

Using our “calculator project” example, the journey starts not with code, but with conversation. The Specify and Clarify
phases translate an idea into a complete, testable specification that the Al can build from.
1. Evals-First Conversation: An informal human-AI chat to define business success criteria. (“What does a ‘good’

calculator do? How does it handle division by zero?")
2. /sp.specify: Formalizes the conversation into “spec.md", defining scope, user stories, and SMART acceptance criteria.
3

/sp.clarify: An Al-driven “devil's advocate” check that probes the spec for ambiguities, missing assumptions, and
edge cases.

[ooo

@ @What about division by zem?]
[A: Should raise a ‘u’alueErrTY]

O [) 9|

Calculator
App

"specs/calculator/spec.md’

Q)

D)

@ Expert Insight: “In Al-native development, your ability to write a clear specification is
more valuable than your ability to write code. The spec IS your code.”

& NotebookLM

The Checkpoint Pattern puts you in control of the workflow.

After the spec is clear, the /sp.plan
and /sp.tasks commands create
the implementation strategy.

. \\AI Generates

This process is governed by the ' Il Authorized Human f\j‘
Checkpoint Pattern, which prevents | | toProceed Reviews &
large, un-reviewable blocks of Al work "
and keeps you in command.

V| Matches spec?
V| No bugs?
v/ Understandable?

Commits

—— || ExpertInsight: “This pattern transforms risk management. Catching bugs in 200 lines of code at
=/ atacheckpointis 100x cheaper than catching them in 5000 lines later.”

& NotebooklLM

Implementation generates code while automatically

capturing successful patterns.

The /sp.implement command orchestrates code generation, task by task, following the checkpoint pattern.
Your role shifts from author to validator.

» The 5-Step Validation Protocol: A systematic process for reviewing Al-generated code:
1. Read & Understand, 2. Check Against Spec, 3. Run Tests, 4. Manual Test, 5. Approve & Commit.

» Automatic Intelligence Capture: During this process, Prompt History Records (PHRs) 7 are automatically
created in the history/prompts/ directory, documenting the successful interactions.

ey

@ add.py x I

def add(a, b):

"""Adds two numbers.
| return a + b

i

000
Tests Passing v
)

b

phr_add_function.md

Prompt:

Generate a Python
function for adding two
numbers with a docstring.
The function should take
two arguments, 'a’ and

‘b’, and return their sum.

Intelligence Library

Al

& NotebooklLM

==

Your intelligence library compounds, making
every subsequent project dramatically faster.

Growth of Reusable Intelligence Library o
Starting with

150
i 150+ artifacts.
Cw» Leveraging 50+ Focus is on
O w
£ % artifacts. Common novel
to 100 problems are problems, not
i & already solved. repeated work.
Qo ae
o T Starting with O
= ri' @-‘ artifacts. High
= =20 learning cost.
S
T2
=

O L J

1 2 3 4 5 6 7 8 9 10
Project Number

* Project 1. Create 3 ADRs + 10 PHRs.
* Project 2: Start with 13 artifacts, create 11 new ones.
* Project 10: Start with the accumulated intelligence from 9 prior projects. You rarely repeat mistakes.

2 SR 2o el et | e ———— & NotebookLM

You evolve from executing workflows to designing
your own intelligence.

The true power of Spec-Kit Plus comes from encoding your own recurring patterns as

reusable intelligence. Use this framework to decide when to create a new Skill or Subagent.

Pattern (}Egegi?éﬁz?) (}S;) g}gigg;};?) Org Value? Encode?
Specification Review &) & & YES
Edge Case ID % &) YES
Git Branch Creation & . (X X) NO

You use the same Persona + Questions + Principles (P+Q+P) pattern you learned about earlier
to build your own custom tools, transforming tacit knowledge into explicit, shareable assets <.

N

fus |

&1 NotebookLM

Bring intelligence capture to your existing codebase with a
safe, proven workflow.

You can add Spec-Kit Plus to an existing project using “specifyplus init --here’.

/\ﬁ Critical Warning: This command is EXPERIMENTAL and will overwrite your

existing CLAUDE.md file. Do not run it without following the safety protocol.

The Merge Strategy
i -
e i RRroleciaRulesig Jl> — B Template
e 1l ——— :
bl b g il gt S o re T oy (Spec-Kit Plus)

—_— Custom Al constitution.md i) gl et

Patterns =——— || Appended

> e Custom Patterns

Existing CLAUDE.md V_\ New CLAUDE.ﬁld
>':' / Preserved

claude/{:nmmaﬂds/

&1 NotebookLM

A step-by-step safety protocol for brownfield

adoption.

This workflow uses git isolation and redundant backups to guarantee zero data loss.

Follow these steps precisely.

o Isolate

git checkout -b feat/skp-adoption

(Protects your main branch.)

e Backup

cp CLAUDE.md CLAUDE.md.backup

(Creates a manual fallback.)
Commit

git commit -am "chore: backup
before speckit init"

(Creates a historical recovery point.)

e ——

e

Initialize

specifyplus init --here

(Runs the experimental command.)

e Merge

- Manually edit "constitution.md” and
" "CLAUDE.md" using your backup file.

o Validate & Commit

Test the setup and commit the new,
merged configuration.

Q

T

&1 NotebookLM

|

Stop being a code generator. Become an intelligence architect.

Ephemeral Gode Perman

|
|

(‘_"i} Amnesia Q
Forget
gl Lnnp Relearn
r HK i
i Code

o

\\i@ (

.
1 -
" ™ .
5 g
- ¥
~ —]

(=] Ll

— . i » TR Ej 1 %

- -

|

_J

L\
o

i

1}

In Al-native development, the units of reuse are specifications, agent architectures, and skills.
The value you create is permanent, compounding with every project you build.

